Maths: Factorial 阶乘 / Permutation 排列 / Combination 组合 / Binomial Theorem 二项式定理Maths: Factorial 阶乘 / Permutation 排列 / Combination 组合 / Binomial Theorem 二项式定理Maths: Factorial 阶乘 / Permutation 排列 / Combination 组合 / Binomial Theorem 二项式定理Maths: Factorial 阶乘 / Permutation 排列 / Combination 组合 / Binomial Theorem 二项式定理
  • 首页
  • 博客
  • 书签
  • 文件
  • 分析
  • 登录

Maths: Factorial 阶乘 / Permutation 排列 / Combination 组合 / Binomial Theorem 二项式定理

发表 admin at 2023年9月14日
类别
  • Maths/AI
标签

Factorial

https://mathworld.wolfram.com/Factorial.html

The factorial n! is defined for a positive integer n as

 n!=n(n-1)...2·1.
(1)

So, for example, 4!=4·3·2·1=24. 

Permutation

https://mathworld.wolfram.com/Permutation.html

A permutation, also called an "arrangement number" or "order," is a rearrangement of the elements of an ordered list S into a one-to-one correspondence with S itself.

The number of ways of obtaining an ordered subset of k elements from a set of n elements is given by

 _nP_k=(n!)/((n-k)!)
(1)

(Uspensky 1937, p. 18), where n! is a factorial. For example, there are 4!/2!=12 2-subsets of {1,2,3,4}, namely {1,2}, {1,3}, {1,4}, {2,1}, {2,3}, {2,4}, {3,1}, {3,2}, {3,4}, {4,1}, {4,2}, and {4,3}. The unordered subsets containing k elements are known as the k-subsets of a given set.

Combination

https://mathworld.wolfram.com/Combination.html

 

The number of ways of picking k unordered outcomes from n possibilities. Also known as the binomial coefficient or choice number and read "n choose k,"

 _nC_k=(n; k)=(n!)/(k!(n-k)!),

where n! is a factorial (Uspensky 1937, p. 18). For example, there are (4; 2)=6 combinations of two elements out of the set {1,2,3,4}, namely {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, and {3,4}. These combinations are known as k-subsets.

Binomial Theorem

https://mathworld.wolfram.com/BinomialTheorem.html

The most general case of the binomial theorem is the binomial series identity

 (x+a)^nu=sum_(k=0)^infty(nu; k)x^ka^(nu-k),
(1)

where (nu; k) is a binomial coefficient and nu is a real number. This series converges for nu>=0 an integer, or |x/a|<1. This general form is what Graham et al. (1994, p. 162). Arfken (1985, p. 307) calls the special case of this formula with a=1 the binomial theorem.

When nu is a positive integer n, the series terminates at n=nu and can be written in the form

 (x+a)^n=sum_(k=0)^n(n; k)x^ka^(n-k).
(2)

This form of the identity is called the binomial theorem by Abramowitz and Stegun (1972, p. 10).

更多参考:

https://www.mathsisfun.com/combinatorics/combinations-permutations.html

发表回复 取消回复

要发表评论,您必须先登录。

类别

  • Cat
  • Python
  • Django
  • Database
  • Html/CSS
  • JavaScript
  • Vue
  • RegExp
  • Maths/AI
  • PHP/Wordpress
  • Practice
  • Linux
  • Windows
  • Android
  • NAS
  • Software
  • Hardware
  • Network
  • SEO
  • English
  • Games
  • Recipes
  • General
  • Memorandum
  • Essays
  • 未分类

归档

©2015-2023 艾丽卡 Blog support@alaica.com
      ajax-loader